EFFECT OF LOW TEMPERATURE BAKING ON NIOBIUM CAVITIES *

G. Ciovati†, P. Kneisel, G. Myneni
Jefferson Lab, Newport News, VA 23606
W. A. Lanford
Department of Physics, SUNY Albany, Albany, NY 12222

Abstract
A low temperature (100°C-150°C) “in situ” baking under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor and a recovery from the so-called “Q-drop” without field emission at high field. A series of experiments with a CEBAF single cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37K-280K and resonant frequency shift between 6K-9.3K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity using a modified version of the computer code originally written by J. Halbritter [1].

Small niobium samples inserted in the cavity during its surface preparation were analyzed with respect to their hydrogen content with a Nuclear Reaction Analysis (NRA).

The single cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models.

This paper describes the results from these experiments and comments on the existing models to explain the effect of baking on the performance of niobium RF cavities.

INTRODUCTION

The excitation curves (Q_0 vs. E_{acc}) of a superconducting cavity in the GHz range made of bulk niobium shows three distinct regions where the quality factor Q_0 changes with the accelerating gradient E_{acc}. An increase of Q_0 is often seen at E_{acc} below 4 MV/m. It is usually followed by slow Q_0 degradation, up to 20-30 MV/m when the quality factor starts to decrease more rapidly, even in absence of field emission (Fig. 1). Baking the cavities between 100°C-150°C under ultra-high vacuum for more than 24h has beneficial effects on the BCS surface resistance and the high field Q-drop. It has been related to oxygen diffusion into the niobium, causing changes of the structure niobium/oxide interface on a nanometer scale.

In this work we wanted to study carefully and systematically the effects of baking on the Q vs. field non-linearity and on the superconducting parameters.

While the effect of baking on the oxide layer has been extensively studied in several laboratories, a lot less is known about the effect of hydrogen, whose presence in niobium has been shown to be problematic [2]. To gain some understanding in this direction, niobium samples baked with the cavity have been analyzed for their hydrogen content and distribution with the NRA [3] at SUNY Albany and compared with samples that have not been baked.

EXPERIMENTAL SETUP & PROCEDURES

The RF tests have been conducted on a CEBAF single cell cavity in the TM010 mode at 1.467GHz. The main electromagnetic parameters of the cavity are: $E_p/E_{acc} = 1.78$, $B_p/E_{acc} = 4.43$ mT/(MV/m), $R/Q = 96.5\Omega$, $G = 273\Omega$.

Prior to stamping the half-cells, the niobium discs were heat treated in a titanium box at 1400°C for 4h. After electron beam welding the half-cells and the beam tubes, the cavity had a pre-chemistry with Buffered Chemical Polishing (BCP).

The preparation for the tests involves:
- Degreasing in ultrasonic tank for 20min
- BCP with HNO₃, HF, H₃PO₄ in ratio 1:1:1 for 1min, removing about 7 µm
- High Pressure Rinsing (HPR) between 40min and 1.5h with ultra pure water
- Assembly of a variable input coupler, providing Q_{ext} adjustable between 10⁷ and 10¹¹, and of a fixed transmission probe. The assembly is done in a class 10 clean room.
- The cavity is attached to a vertical test stand and evacuated to about 10⁻⁶ mbar using a turbo-molecular

Figure 1: Q vs. field “anomalous” behaviours.

* Work supported by the U.S. DOE Contract No DE-AC05-84ER40150
† gciovati@jlab.org
pump backed by a scroll pump.

- Four calibrated Cernox\textregistered thermometers (two at the top iris, two at the bottom iris) are pushed against the cavity with the aid of an aluminium frame; Apiezon\textregistered grease between thermometers and cavity is used to insure a good thermal contact.

Two niobium samples are prepared with the cavity and one of them is inserted into the pumping line of the test stand.

After cool-down in a dewar filled with liquid helium to 4.2K, the following tests are performed:

- Q_0 vs. temperature is measured between 4.2K and 1.37K. The temperature is obtained from the helium pressure measured with a calibrated Baratron\textregistered gauge.
- Q_0 vs. E_{acc} is measured at 2.2K, 2K, 1.37K.
- The liquid helium is boiled off with a heater and then the cavity is warmed up through the dewar static heat leak. Frequency and Q_0 are measured with a network analyzer in the temperature range 6K to 280K, obtained as the average of the four Cernox readings. The data are automatically acquired with a Labview\textregistered code.
- The test stand with the cavity and the sample are baked "in situ" at a fixed temperature for 48h plus 2h for temperature ramp-up and down. Two heaters blowing hot nitrogen in an oven are used to raise the temperature that is controlled within 1\textdegree C. The partial pressures of the main gas species are recorded with a residual gas analyzer during bake-out.
- The measurements listed in the first three bullets are repeated on the baked cavity.
- The cavity is finally disassembled and processed again for the baseline tests and baking at another temperature.

The warm up between 4.2K and 9.5K takes about 9h and the temperature difference across the cavity is within 15mK. The dewar is also opened to atmosphere so that the pressure is within 2mbar. These procedures assure a very accurate measurement of frequency, Q_0, and temperature.

We choose to bake the cavity for a fixed amount of time because, according to the solution of the diffusion equation \cite{4}, it is faster to change the concentration of oxygen at a depth of the order of the RF penetration depth by increasing the baking temperature than by increasing time, as it can be seen in Fig. 2 and 3.
The values of the surface resistance are obtained from Q_0 through the relation $R_S = G/Q_0$ while the variation of the penetration depth λ is obtained from the resonant frequency shift between 6K and 9.3K according to the following formula [5]:

$$\lambda(T) - \lambda(T_0) = \frac{G}{\mu_0 \cdot \pi \cdot \xi_0(T) \cdot f_0(T)} \cdot \left[f(T) - f(T_0) \right]$$ (1)

where T_0 is typically 6K. Furthermore, the surface resistance is expressed as the sum of the BCS term and a residual term R_{res}.

The surface resistance and the penetration depth data are fitted with a computer code [6] that includes the complete BCS theory calculation for diffuse electrons at the surface, as written by Halbritter [1]. The parameters obtained from the fits are the critical temperature T_c, the energy gap at 0K $\Delta(0)$, the mean free path of the normal electrons ℓ, the residual resistance R_{res} and the penetration depth at 0K $\lambda(0)$. It has been shown that these parameters are strongly dependent on the surface condition [7, 8], while the values of the London penetration depth λ_L and the coherence length $\xi = \pi \cdot \lambda_L / 2$ are considered material constants equal to 32nm and 62nm respectively [9].

The surface resistance in the normal conducting state has been fitted with a computer code [10] that includes the anomalous skin effect and the values of the surface resistivity $\rho(T)$ at 10K and 300K are obtained. The ratio $\rho(300K)/\rho(10K)$ defines the residual resistivity ratio (RRR) which is also a parameter related to the impurity content in the material.

The fit of the surface resistance data between 4.2K and 1.37K allows to obtain the material parameters in the RF penetration depth that is about 40nm at those temperatures. Close to T_c, the RF is penetrating about 300nm deep into the surface, and the material parameters obtained from the RF measurements are relative to such depth.

Fig. 5 and 6 show examples of the typical frequency shift and surface resistance vs. temperature above 6K, Fig. 7 shows the typical surface resistance in the normal conducting state vs. temperature.

![Figure 5](image5.png)
Figure 5: Typical frequency shift vs. temperature close to T_c. Data are acquired every 30s.

![Figure 6](image6.png)
Figure 6: Typical surface resistance vs. temperature close to T_c.

Table 1: Material parameters before and after baking at different temperatures.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Δ/kT_c (40nm)</th>
<th>Δ/kT_c (300nm)</th>
<th>ℓ(40nm) [nm]</th>
<th>ℓ(300nm) [nm]</th>
<th>T_c [K]</th>
<th>$\lambda(0K)$ [nm]</th>
<th>Surf. RRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1.89 ± 0.03</td>
<td>1.86 ± 0.03</td>
<td>364 ± 187</td>
<td>954 ± 38</td>
<td>9.256 ± 0.014</td>
<td>46 ± 1</td>
<td>255 ± 26</td>
</tr>
<tr>
<td>50°C bake</td>
<td>1.84 ± 0.03</td>
<td>1.86 ± 0.03</td>
<td>193 ± 76</td>
<td>785 ± 36</td>
<td>9.255 ± 0.014</td>
<td>46 ± 1</td>
<td>255 ± 26</td>
</tr>
<tr>
<td>Baseline</td>
<td>1.81 ± 0.01</td>
<td>1.91 ± 0.03</td>
<td>695 ± 187</td>
<td>990 ± 61</td>
<td>9.240 ± 0.005</td>
<td>47 ± 1</td>
<td>195 ± 20</td>
</tr>
<tr>
<td>70°C bake</td>
<td>1.84 ± 0.02</td>
<td>1.88 ± 0.01</td>
<td>483 ± 130</td>
<td>671 ± 72</td>
<td>9.251 ± 0.009</td>
<td>43 ± 1</td>
<td>220 ± 22</td>
</tr>
<tr>
<td>Baseline</td>
<td>1.85 ± 0.02</td>
<td>1.86 ± 0.03</td>
<td>1455 ± 611</td>
<td>697 ± 27</td>
<td>9.255 ± 0.010</td>
<td>45 ± 1</td>
<td>189 ± 19</td>
</tr>
<tr>
<td>90°C bake</td>
<td>1.85 ± 0.02</td>
<td>1.85 ± 0.02</td>
<td>178 ± 60</td>
<td>514 ± 13</td>
<td>9.248 ± 0.004</td>
<td>40 ± 1</td>
<td>191 ± 19</td>
</tr>
<tr>
<td>Baseline</td>
<td>1.79 ± 0.03</td>
<td>1.96 ± 0.03</td>
<td>387 ± 190</td>
<td>1077 ± 47</td>
<td>9.254 ± 0.015</td>
<td>44 ± 1</td>
<td>175 ± 18</td>
</tr>
<tr>
<td>105°C bake</td>
<td>1.82 ± 0.02</td>
<td>1.95 ± 0.03</td>
<td>64 ± 31</td>
<td>708 ± 14</td>
<td>9.233 ± 0.003</td>
<td>42 ± 1</td>
<td>209 ± 21</td>
</tr>
<tr>
<td>Baseline</td>
<td>1.80 ± 0.02</td>
<td>1.94 ± 0.06</td>
<td>476 ± 150</td>
<td>854 ± 38</td>
<td>9.238 ± 0.009</td>
<td>36 ± 1</td>
<td>216 ± 22</td>
</tr>
<tr>
<td>120°C bake</td>
<td>1.89 ± 0.01</td>
<td>1.95 ± 0.06</td>
<td>26 ± 118</td>
<td>354 ± 78</td>
<td>9.219 ± 0.013</td>
<td>36 ± 1</td>
<td>211 ± 21</td>
</tr>
<tr>
<td>Baseline</td>
<td>1.78 ± 0.02</td>
<td>1.96 ± 0.06</td>
<td>250 ± 71</td>
<td>1024 ± 42</td>
<td>9.246 ± 0.019</td>
<td>38 ± 1</td>
<td>218 ± 22</td>
</tr>
<tr>
<td>140°C bake</td>
<td>1.89 ± 0.01</td>
<td>1.93 ± 0.01</td>
<td>27 ± 102</td>
<td>454 ± 67</td>
<td>9.199 ± 0.019</td>
<td>32 ± 1</td>
<td>181 ± 18</td>
</tr>
<tr>
<td>Baseline</td>
<td>1.81 ± 0.02</td>
<td>1.88 ± 0.05</td>
<td>508 ± 157</td>
<td>784 ± 90</td>
<td>9.242 ± 0.004</td>
<td>41 ± 1</td>
<td>196 ± 20</td>
</tr>
<tr>
<td>160°C bake</td>
<td>1.85 ± 0.01</td>
<td>2.10 ± 0.15</td>
<td>27 ± 74</td>
<td>12 ± 1</td>
<td>9.265 ± 0.019</td>
<td>78 ± 1</td>
<td>136 ± 14</td>
</tr>
</tbody>
</table>
The results from the data fits are shown in Table 1. The values of mean free path over a 300nm depth and \(T_c\) are the weighted average of the values obtained from the surface resistance and penetration depth fit. The average value of the \(RRR\) in the surface before baking is 206 ± 3 and it corresponds to the oxygen concentration of 0.017 at.% \[11\]. The bulk \(RRR\) after the post-purification heat treatment is estimated to be greater than 300.

The values of the BCS surface resistance at 4.2K and of the residual resistance, measured at \(B_p=4\) mT, are indicated in Table 2, along with the performance limitation at high field (\(E_p=32+46\) MV/m, \(B_p=80+116\) mT). FE refers to field emission and \(\beta\) is the field enhancement factor.

<table>
<thead>
<tr>
<th>Baking Temperature [°C]</th>
<th>(\Delta\frac{R_{BCS}}{R_{BCS}(4.2\text{K})}) [%]</th>
<th>(\Delta l) [nm] in a 300nm depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 844 ± 59, (\beta=230)</td>
<td>4.9 ± 0.6, FE (\beta=179)</td>
<td>300nm depth</td>
</tr>
<tr>
<td>50°C bake 816 ± 57</td>
<td>2.4 ± 0.3, FE (\beta=179)</td>
<td>300nm depth</td>
</tr>
<tr>
<td>Baseline 1130 ± 79, (\beta=185)</td>
<td>4.4 ± 0.2, Quench</td>
<td>300nm depth</td>
</tr>
<tr>
<td>70°C bake 1048 ± 73</td>
<td>6.4 ± 0.3, Quench</td>
<td>300nm depth</td>
</tr>
<tr>
<td>Baseline 1148 ± 80, (\beta=185)</td>
<td>5.2 ± 0.2, FE (\beta=185)</td>
<td>300nm depth</td>
</tr>
<tr>
<td>90°C bake 849 ± 59</td>
<td>5.9 ± 0.2, FE (\beta=177)</td>
<td>300nm depth</td>
</tr>
<tr>
<td>Baseline 1112 ± 78</td>
<td>7.4 ± 0.3, FE (\beta=165)</td>
<td>300nm depth</td>
</tr>
<tr>
<td>105°C bake 717 ± 50</td>
<td>10.3 ± 0.3, FE (\beta=280)</td>
<td>300nm depth</td>
</tr>
<tr>
<td>Baseline 1110 ± 78, (\beta=185)</td>
<td>6.9 ± 0.2, Q-drop</td>
<td>300nm depth</td>
</tr>
<tr>
<td>120°C bake 542 ± 38</td>
<td>6.4 ± 0.1, Quench</td>
<td>300nm depth</td>
</tr>
<tr>
<td>Baseline 1059 ± 74, (\beta=192)</td>
<td>5.4 ± 0.2, FE (\beta=192)</td>
<td>300nm depth</td>
</tr>
<tr>
<td>140°C bake 565 ± 40</td>
<td>8.9 ± 0.2, FE (\beta=188)</td>
<td>300nm depth</td>
</tr>
<tr>
<td>Baseline 1110 ± 78, (\beta=185)</td>
<td>4.0 ± 0.2, Q-drop</td>
<td>300nm depth</td>
</tr>
<tr>
<td>160°C bake 618 ± 43</td>
<td>7.5 ± 0.2, Quench</td>
<td>300nm depth</td>
</tr>
</tbody>
</table>

It can be seen from Table 2 and Fig. 8 that the BCS surface resistance decreases by as much as 50% after baking and this effect is mainly due to a reduction in the mean free path, as it can be seen in Fig. 9. Since the surface resistance has a weak dependence on the mean free path the values obtained from the fits in the 4.2K – 1.37K range have large errors. The penetration depth has a stronger dependence on mean free path and therefore \(l\) is obtained more accurately close to \(T_c\).

The dependence of the BCS surface resistance on the mean free path is well described by the BCS theory and is plotted in Fig. 10 for values of \(\Delta(0K)/kT\) between 1.8 for an oxidized surface and 1.9 for a purer surface.

The dependence of the residual resistance on the baking temperature does not show a clear trend, although it generally increases after baking. The values of residual
resistance in the baseline tests differ by as much as a factor of two, between $4n\Omega$ and $7.4n\Omega$ and the cause for such variations is presently unknown.

The values of $\Delta(0K)/kT_c$ in the 40nm depth before and after baking are within error bars up to 100°C but above this temperature they increase to values corresponding to purer niobium (Fig. 11). Similarly, the surface RRR clearly starts to decrease for baking temperatures higher than 120°C. Both effects are consistent with the model of deeper oxygen diffusion in the niobium at progressively higher temperatures.

The average value of the critical temperature before baking is $9.252 \pm 0.004K$ and it is $9.241 \pm 0.005K$ after baking. The decrease can also be explained with oxygen diffusion in the material [11].

The high power RF tests revealed the high field Q-drop without field emission on two occasions. The first time the cavity was baked at 120°C for 48h and after that the Q-drop disappeared and the cavity quenched at a peak magnetic field of 130mT (Fig. 14).

In this case the residual resistance after baking did not increase and there was also an enhancement of the low field Q-slope observed.

The results from the NRA measurements on samples are shown in Fig. 12: the hydrogen concentration is significantly reduced in the baked samples.
MODELS COMPARISON

Surface analysis studies [12, 13, 14, 15] on niobium samples indicate that baking at progressively higher temperatures causes a conversion of the external Nb2O5 layer to the metallic sub-oxides (NbO, NbO2) and an overall reduction of the oxide layer. The RF measurements reported here are consistent with those results: above about 100°C, the energy gap at 0K in the 40nm region starts to increase towards values corresponding to pure niobium, the surface RRR and mean free path are decreasing, due to oxygen injection in the niobium, causing a reduction of the BCS surface resistance, as predicted by the BCS theory. Furthermore, the NRA measurements show that the hydrogen, which is trapped between the oxide layer and the niobium, is released after baking.

Low Field Q-Slope

J. Halbritter provided an explanation for the decrease of the surface resistance at low field [16]. According to his model, the injection of oxygen in the niobium after baking produces additional NbOx clusters that, at low field, are not in thermal equilibrium with the surrounding niobium and therefore cause additional losses. Above about $B_p=12\text{mT}$ thermal equilibrium is achieved. He predicts the surface resistance to be inversely proportional to the square of the peak magnetic field. We fitted the surface resistance at low field according to the following formula:

$$R_s = a / B_p^2 + b$$

which describes quite well the data before and after baking. The average correlation factor r^2 over twenty fits is 0.977.
The low field Q-slope can be present also before baking, depending on the amount of NbO$_x$ clusters and therefore on the oxidation condition.

Medium Field Q-Slope

Above about 12mT peak magnetic field, the cavity quality factor is decreasing with higher fields, causing a medium field Q-slope that is temperature dependent. All the models that try to explain this effect involve heating of the inner surface of the cavity with respect to the helium bath due to low thermal conductivity and Kapitza resistance of niobium. The data have been analyzed according to three models:

1. J. Halbritter proposed the following Taylor series of the surface resistance, obtained from the Ginzburg-Landau theory [17]:

$$R_s = R_{s0} (1 + \gamma (B_p/B_c)^2 + O(B_p^4))$$

where $R_{s0} = R_{res} + R_{BCS}$ and γ are fitting parameters. γ represents the slope and the following expression was obtained:

$$\gamma = R_{BCS}(T_0)B_c^{-2}\Delta/(2\cdot k\cdot T_0^2)(d/\kappa + R_k)$$

where κ is the thermal conductivity, R_k is the Kapitza resistance, d is the wall thickness, T_0 is the helium bath temperature and B_c is the critical field which is about 200mT.

2. we propose a Taylor series of the surface resistance starting at first order:

$$R_s = a + b\cdot B_p + O(B_p^2)$$

where a and b are fitting parameters.

3. B. Visentin [18] proposed the so-called “global heating” model, based on a Taylor series of the surface resistance up to first order in temperature:

$$R_s = R_{s0} / (1 - C\cdot B_p^2)$$

where R_{s0} and C are fitting parameters and $C = \gamma / B_c^2$.

The average correlation factor r^2 over twelve fits for the three models and the three temperatures at which the RF tests were done are listed in Table 3:

<table>
<thead>
<tr>
<th>Model #</th>
<th>Avg. r^2 (2.2K)</th>
<th>Avg. r^2 (2K)</th>
<th>Avg. r^2 (1.37K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.964</td>
<td>0.903</td>
<td>0.973</td>
</tr>
<tr>
<td>2</td>
<td>0.860</td>
<td>0.963</td>
<td>0.958</td>
</tr>
<tr>
<td>3</td>
<td>0.727</td>
<td>0.645</td>
<td>0.909</td>
</tr>
</tbody>
</table>

In Table 4 are indicated the average values of the slope γ_{data} from model #1 at the three different temperatures for all the baselines (before bake) and after all the baking.

<table>
<thead>
<tr>
<th>γ_{data} before bake</th>
<th>γ_{data} after bake</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.37 K</td>
<td>1.95 ± 0.03</td>
</tr>
<tr>
<td>2 K</td>
<td>1.05 ± 0.03</td>
</tr>
<tr>
<td>2.2 K</td>
<td>14.4 ± 0.2</td>
</tr>
</tbody>
</table>

It can be seen from Table 4 that the slope before baking at 1.37K is about a factor of two higher than the slope at 2K. The slopes also increase by about a factor of two after baking. At 1.37K the BCS surface resistance is only about 0.4nΩ and the residual resistance is at least one order of magnitude higher. If, in first approximation, we neglect the BCS surface resistance, we conclude that the temperature independent residual resistance has an intrinsic dependence on the RF magnetic field through the slope $\gamma_{data}(1.37K)$. Furthermore, if we assume that the Taylor series of model #1 refers only to the BCS part of the surface resistance (T dependent) we can obtain an expression that relates the theoretical γ at 2K given by (4) to measured quantities:
\[\gamma(2K) = \frac{[R_d(2K) - R_{res} \gamma_{data}(1.37K)]}{R_{BCS}(2K)} \]

(7)

The average value for the expression on the right hand side is equal to 0.57 and is equal to the value given by (4) assuming a thermal conductivity of 6 W/(m·K) and a Kapitza resistance of \(1.25 \times 10^{-4}\) (m²·K)/W. Both these quantities are well within published values [19].

On the other hand, the factor of two increase of the slope after baking would be explained by a factor of thirty higher Kapitza resistance. A confirmation of such an increase would require a direct measurement of Kapitza resistance after baking.

Above the superfluid transition temperature \((2.17)\), the slope increases by about one order of magnitude. This is due to heating of the RF inner surface of the cavity due to the worse heat transfer capabilities of He I.

High Field Q-Drop

Field emission is the main limitation towards achieving high accelerating gradients in superconducting cavities but sometimes the \(Q_0\) vs. field curve is characterized by a sharp decrease of the quality factor at high field in the absence of X-rays, causing the so-called “Q-drop”.

During these series of tests, this phenomenon was seen on two occasions and in both cases it disappeared after baking, as shown in Fig. 14 and 18. Such improvement was already seen in many laboratories [18, 20].

We analyzed our data according to three models:

1. J. Halbritter explains the Q-drop as due to Interface Tunnel Exchange (ITE) between conduction electrons in the niobium and localized states in the niobium pentoxide, causing losses due to the electric field [21]. This mechanism introduces an electric surface resistance which becomes important at high field and can be described by the following expression:

\[R_s^E = b [\exp(-c/E_p) - \exp(-c/E_0)]\]

(8)

where \(b, c, E_0\) are fitting parameters. \(E_0\) represents the electric field onset for the Q-drop and the electric surface resistance \(R_s^E\) can be obtained from the measured surface resistance from (3) as follows:

\[R_s^E = R_s / (1 + \gamma (B_p/B_c)^2) - R_{so}\]

(9)

and \(R_{so}\) is the surface resistance at low field, where the electric component can be neglected.

2. K. Saito proposed a model to explain the Q-drop based on a temperature increase of the RF surface and a magnetic field dependence of the energy gap, according to the following formula [22]:

\[R_s = \frac{A}{T_0 + C \cdot B_p} \cdot \exp\left(-B \cdot \left[1 - \frac{B_p}{\sqrt{2} \cdot B_c}\right]^2\right) + R_{res}\]

(10)

where \(A, B\) and \(R_{res}\) are obtained from the fit of \(R_s\) vs. \(1/T\) between 4.2K and 1.37K while \(C\) and \(B_c\) are the fitting parameters.

Both models #2 and #3 are based on a magnetic field effect.

The fits with model #2 do not give values of \(C\) and \(B_c\) that have physical meaning: \(C\) turns out to be negative and \(B_c\) is smaller than the values of \(B_p\) actually measured.

Models #3 and #1 can fit all our data very well. Fig. 22 and 23 shows the results of the fit with models #3 and #1 respectively.

![Figure 22: \(R_s\) vs. \(B_p\) fitted with model #3.](image)

![Figure 23: Electric surface resistance fitted with model #1.](image)
Table 5: Main fitting parameters and correlation factors for the surface resistance fit of the \(Q \)-drop with models \#1 and \#3.

<table>
<thead>
<tr>
<th>Test #</th>
<th>Model #1</th>
<th>Model #3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_0)[MV/m]</td>
<td>(E_0)[MV/m]</td>
</tr>
<tr>
<td>9 @ 2K</td>
<td>820</td>
<td>40.5</td>
</tr>
<tr>
<td>9 @ 1.37K</td>
<td>789</td>
<td>39.5</td>
</tr>
<tr>
<td>11 @ 2K</td>
<td>700</td>
<td>36.9</td>
</tr>
<tr>
<td>11 @ 1.37K</td>
<td>679</td>
<td>34.7</td>
</tr>
</tbody>
</table>

The values of \(E_0 \) obtained from the fits are within 1MV/m of the measured peak electric field at which the \(Q \)-drop starts.

Model \#1 explains the disappearing of the \(Q \)-drop after baking as due to the reduction of the niobium pentoxide layer and therefore of the localized states and of the ITE effect. The major problem towards the validation of this model is due to the results from temperature mapping of the cavity surface showing heating in a broad area around the equator region where the magnetic field is stronger [24].

The global heating model is not consistent with the recovery of the \(Q \)-drop after baking because the slope \(\gamma \) is stronger after baking and so it should be the parameter \(C \) and the \(Q \)-drop.

In the test before the 160\(^\circ\)C baking, the cavity was warmed-up to about 12K and the residual DC magnetic field in the dewar was increased. This operation was repeated a few times to see any influence on the \(Q \)-drop. As it can be seen in Fig. 24, there is no significant variation in the behaviour of the \(Q \)-drop. The residual resistance is increasing due to the DC magnetic field being trapped during the cool-down [23].

SUMMARY

Baking a niobium cavity for 48h at temperatures greater than 100\(^\circ\)C causes the following effects:

- Reduction of the BCS surface resistance at 4.2K by as much as 50% and the cavity quality factor at 2K can be improved by as much as 20%.
- RF measurements are consistent with surface analysis results in explaining the baking effect as mainly due to a modification of the oxide structure and oxygen diffusion in the niobium causing a reduction in the mean free path.
- Hydrogen is also released from the surface. Its effect on the surface resistance is not clear yet as well as the effect of baking on the residual resistance.
- The low field \(Q \)-slope data are well described by the model proposed by Halbritter of Nb\(\text{O}_x\) clusters not in thermal equilibrium with the surrounding niobium.
- The data at 1.37K suggest an intrinsic dependence of the residual resistance on the RF magnetic field that needs further investigations. Baking seems to increase the Kapitza resistance but more direct measurements would be necessary.
- The high field \(Q \)-drop disappeared after baking at 120\(^\circ\)C and 160\(^\circ\)C and the data are well described by the ITE model, related to electric field, and by global heating model, related to magnetic field. On the other hand, both models are in conflict with some experimental observations [25].
- A residual DC magnetic field does not seem to influence the behaviour of the \(Q \)-drop.

ACKNOWLEDGEMENT

We would like to thank J. Delayen and J. Halbritter for many useful discussions.

REFERENCES